Koszul Duality And Gröbner bases
Published:
Koszul duality is a fundamental notion of Math. Its reincarnations can be found in algebra, geometry and homotopy theory. For example, Sullivan and Quillen’s approaches to rational homotopy theory are Koszul dual to each other with respect to the Koszul duality between commutative and Lie operads. In algebra, we have the PBW-theorem (by Poincaré, Birkhoff and Witt), which states that the universal enveloping algebra of a Lie algebra looks like a polynomial algebra meaning that it has as a monomial basis of a vector space with variables being sorted by some fixed order. Further, by algebras we mean associative differential graded algebras $A = T(V)/R$ with $R$ being quadratic or quadratic-linear relations (e. g., tensor algebras $T(V),$ symmetric algebras $S(V),$ universal enveloping algebras $U(\mathfrak{g}),$ etc). Read more