Representable Comme - Categories Model Independence

as a comma ∞ -corregory

Def. Given
$$C \xrightarrow{g} A \xleftarrow{f} B$$

The comma ∞ -category $Hom_A(f,g) \longrightarrow C \times B$ is left representable
if $\exists \ C : B \longrightarrow C$ s.t.
 $Hom_A(f,g) \cong Hom_C(\ell,C)$
 $C \times B$

& right representable if
$$\exists \tau: C \longrightarrow B \quad s.t.$$

 $\operatorname{Hom}_{A}(f,g) \cong \operatorname{Hom}_{B}(B,\tau)$
 $\operatorname{C\times B}^{C\times B}$

Que local goal: $Hom_A(f,g)$ is right representable $g: C \rightarrow A$ admits an absolute right lifting along $f: B \rightarrow A$

Three stages to do this: (1) The 1st result characterizes those $c \stackrel{?}{\underset{g}{\longrightarrow}} \stackrel{h}{\underset{f}{\longrightarrow}} f$ that define absolute right lifting diagrams between comma ∞ -categories as those that induce

$$\mathcal{H}_{\mathcal{B}}(\mathcal{B}, \mathcal{Z}) \cong \mathcal{H}_{\mathcal{C}\mathcal{X}\mathcal{B}}(\mathcal{F}, \mathcal{G})$$

(2) The 2nd result: no natural transformation
$$S: fr \Rightarrow g$$

need be provided

(3) The 3rd most general result: a criterion to construct a right representation to $\operatorname{Hom}_{A}(f,g)$ without a priori specifying functor \mathcal{E}

· Apply it to the comma cone under Hom (f,g):

• It remains to show that $\exists y \cong id_{Hom_{\mathcal{B}}}(B, 7)$

• So, we have shown that
$$\operatorname{Hom}_{\mathcal{B}}(\mathcal{B}, \mathcal{T}) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{A}}(f, g)$$

over CxB

9 is a right comma cone

∀ 2-cell on the right side produces α 2-cell on the left by payting with p ⇒ we have the univ prop. of absolute right lifting diagrams.

Corollary The condition functor f: A -> B between ~- cats bing fully faithful is equivalent to each of the items: $A \xrightarrow{\qquad } B \xrightarrow{\qquad } B$ (ii)(i) $A \xrightarrow{\|} f \xrightarrow{A} B$ - 11 - left (iii) $\forall \infty - \cot X$ the induced functor

 $f_X: hFrom(X, A) \longrightarrow hFrom(X, B)$ is a fully faithful functor of 1-cats

Proof: Obiously, (i) & (ii) are equivalent with (iii) · (i) & (ii) are equivalent with (iv) by the provious theorem ~

Corollary Cosmological functors preserve absolute lifting diagrams Prof: Let F: K->L be a com. fun. together with $C \xrightarrow{2} A A$. It induces a fibered equivalence γ : Hom, $(B, r) \xrightarrow{\sim} Hom_{A}(f, g)$ since Fpreserves WE · Applying F, we will have Fy: $H_{em}_{FB}(FB, Fr) \xrightarrow{\cong} H_{em}_{FA}(Ff, Fg)$ FCXFB

Hom (FB, Ham_{FB} (FB, Fr) F۲ Hom FA FC FB (F.f, Po Ff Fg În FB Ff FA Fg By the theorem this fibered equivalence witnesses the fact that

defines an absolute right lifting diagram in L

• The next theorem allows us to recognize when a common ~-cat is right representable in the absence of a predetermind representing functor

· It specializes to give existence theorems for adjoint functors I for (Co)limits

Theorem $\operatorname{Hom}_{A}(f_{1}g)$ associated to a cospon $C \xrightarrow{g} A \xrightarrow{f} B$ is right representable $\iff \exists i - \alpha \operatorname{right} \operatorname{adj} \operatorname{right} \operatorname{inverse}$ $\exists \operatorname{left} \operatorname{adj} \pounds \varepsilon \operatorname{is} \operatorname{invertible}$ The nort. tromsf. is encoded by the functor $\operatorname{Pa}_{A}(f_{1}g)$ $i: C \longrightarrow \operatorname{Hom}_{A}(f_{1}g)$ $i: C \longrightarrow \operatorname{Hom}_{A}(f_{1}g)$ $f_{Pa} \stackrel{i}{=} \operatorname{id}_{C} \xrightarrow{p_{i}} \xrightarrow{g} A \xrightarrow{f}$

Proof: We know that

 $A = \begin{bmatrix} B & are an absolute & right \\ IIE & f & lifting properties \end{bmatrix}$ $C \xrightarrow{\frac{\gamma}{\gamma}}_{g} A$ is an absolute right lifting diagram Hom_B (B, r) $\approx Hom_A (f, g)$ Apply the first theorem

$$\begin{array}{rcl} & \operatorname{Hom}_{\mathcal{B}}(\mathcal{B}, \mathcal{U}) \cong \operatorname{Hom}_{\mathcal{A}}(f, \operatorname{id}_{\mathcal{A}}) = \operatorname{Hom}_{\mathcal{A}}(f, \mathcal{A}) \\ & \underbrace{\operatorname{Example}}_{\text{factors}} & If & \underbrace{\mathcal{B}}_{\stackrel{\label{eq:scalar}{l}}{\underset{\mathcal{U}}{\overset{f}{l}}} \mathcal{A} & \operatorname{then}_{\mathcal{H}} & \operatorname{Ha:} \mathcal{I} \longrightarrow \mathcal{A} \\ & & \operatorname{He:} & \operatorname{He:} \mathcal{A} \\ & & \operatorname{He:} \mathcal{I} \longrightarrow \mathcal{B} \end{array}$$

 $fa \downarrow b \cong a \downarrow ub$

<u>Hdjunctions</u>, (co) limits via commas

· We know that adjunctions can be encoded via isomorphisms of commas

From the first main theorem we get <u>Prop.</u> $l: 1 \longrightarrow A$ defines a limit for a diagram d: 1 -> A <=> = a fibered equivalence $\begin{array}{c} Hom_{A^{J}}(A, \ell) & \cong & Hom_{A^{J}}(\Delta, d) \\ & & & & \\ & & & & \\ & & & & P_{1} & & P_{0} \end{array}$ Proof: Recall by def: f: lim d is the limit of a diagram $d: 1 \rightarrow A^{J}$

Prop. ((co)limits represent cones) A family of diagrams d: D->A admits a limit $\iff Hom_{A^{\mathcal{G}}}(\Delta, d)$ is right presentable $\underset{A^{\mathcal{J}}}{\operatorname{Hom}}(\Delta, d) \cong \underset{D \times A}{\cong} \operatorname{Hom}_{A}(A, \ell)$ l:D-> A defines the limit functor Dually, $\exists \operatorname{colim}(d: D \rightarrow A^{\mathcal{I}}) \iff \operatorname{Hom}_{A^{\mathcal{I}}}(d, \Delta)$ is left repr. $\operatorname{Hom}_{A^{\mathcal{J}}}(\mathcal{A}, \Delta) \cong \operatorname{Hom}_{A}(c, A)$ C: D-> A defines the colimit functor

Prop. (limits are terminal cones) A diagram $d: 1 \rightarrow A$ in an ∞ -cat (i) admits a lim $\iff Hom_{A^{\mathcal{J}}}(\Delta, d)$ admits a terminal element (ii) admits a colim $\iff Hom_{A^{\mathcal{J}}}(d, \Delta)$ admits an initial element

Model independence of basic ~-cat theory

. Any categorical property that can be captured by the existence of a fibered equivalence between comma ∞ - cats is "model independent" preserved by any cosmological functor reflected by those that define WE of ~ - cosmi

Def (Recall) A connological functor is a simplicial functor between ∞ - commi that preserves the class of isofibrations & terminal abject 1, cotensors AT sSet an object of ∞ -cosmos \mathcal{K} · Aleo, it preserves WE & Fib^{tz} • A cosmological functor $F: \mathcal{K} \longrightarrow \mathcal{L}$ induces a 2-functor $F_{Z} := h_{0}F : \mathcal{K}_{Z} \longrightarrow \mathcal{L}_{Z}$ $ii \qquad ii \qquad h_{0}\mathcal{K} \qquad h_{0}\mathcal{L}$

Prop. F:
$$K \rightarrow L$$
 induces $F_2: K_2 \rightarrow L_2$ that
preserves adjunctions, equivalences, isofibrations, trivial fibrations,
groupoidal objects, products L comma objects
Proof: Any 2-functor preserves adj. S equiv.
• Isofibrations are preserved by the def. of comm.
functors
• Fib^{tz} = Isofib () Equiv. \Rightarrow Fib^{tz} are preserved as well
• E is groupoidal $\iff E^{I} \implies E^{R}$ is in Fib^{tz}
(i) E is groupoidal adjects in an \bigotimes -cannes $\mathcal{H}_{(iii)} \forall X \in \mathcal{K}$ Fun (X, E) is a kan
(ii) V 2- cell with vodemain E is inv. in K_2 (iV) $E^{I} \implies E^{R}$ is in Fig^{ez}

$$\begin{array}{l} (i) \Rightarrow (ii) \quad \text{obviously by def.} \\ (ii) \Leftrightarrow (iii) \quad \text{by Joyal.} \\ (iv) \Leftrightarrow \quad \text{Fum} \left(X, E\right)^{I} \longrightarrow \text{Fum} \left(X, E\right)^{2} \quad \text{is in Fi} \in^{t_{2}} \quad \text{H} \\ \quad \text{Surj on vertices} \Rightarrow \quad \text{H} \ 1 \text{-simplex in Fun} \left(X, E\right) \quad \text{is an ico} \\ \quad \text{Had we have } (iii) \\ (iii) \Rightarrow (iv) \quad 2 \subset I \quad \text{is a weak homotopy equiv.} \end{array}$$

Def (weak equivalences of ∞ -cosmoi) $F: \mathcal{K} \to \mathcal{L}$ is $\mathcal{W}\mathcal{E}$ when it is (a) surjective on objects up to equivalence $\mathcal{H}\mathcal{X} \in \mathcal{L}$ $\exists \mathcal{A} \in \mathcal{K}$ s.t. $F\mathcal{A} \cong \mathcal{X} \in \mathcal{L}$

(6) a local equivalence of quasi-categories: $Fun(A, B) \xrightarrow{\cong} Fun(FA, FB) - an equiv. of$ $\forall A, B \in \mathcal{K}$ Gnati-cats

Prop. If F is a
$$WE$$
 of ∞ -cormai then F_2
(i) defines a biequivalence. $F_2: \mathcal{K}_2 \rightarrow \mathcal{L}_2$
 F_2 is swrj. an obj. \mathcal{L} hom $(A, B) \xrightarrow{\simeq}$ hom (FA, FB)
 $VA, B \in \mathcal{K}$
(ii) hom $(A, B) \xrightarrow{\cong}$ hom (FA, FB)
induces a bijection on isomorphism classes of objects
(iii) preserves \mathcal{L} reflects groupoidal objects;
 $A \in \mathcal{K}$ is groupoidal \ll $FA \in \mathcal{L}$ is so
(iv) preserves \mathcal{L} reflects equivalences
 $A \cong B \in \mathcal{K} \iff FA \cong FB \in \mathcal{L}$

(v) preserves & reflects comma abjects: given $E \rightarrow C \times B \& C \xrightarrow{g} A \xleftarrow{f} B in \mathcal{K}$ then

$$E \cong Hom_{A}(f,g) \iff FE \cong Hom_{FA}(Ff,Fg)$$

$$\stackrel{\cong}{\cong} F(Hom_{A}(f,g))$$

$$\stackrel{\cong}{=} F(Hom_{A}(f,g))$$

$$FC \times FB$$

- The preservation halves of (iv)-(vi) was proved in the previous prop.
- The reflection part of (iv) (vi) is obvious

Theorem (model independence of basic category theory I) The following notions are preserved & reflected by any WE of ∞ - cosmoi: f (i) The adjointness B___A (ii) The existence of left & right adj. to u: A-B (iii) The question of whether a given element $l: 1 \rightarrow A$ defines a limit er a colimit for a diagram d: 1->A (iv) The existence of a limit or a colimit for a I-indexed diagram d: $1 \longrightarrow A^{J}$ in an $\infty - cat A$ Proof: These notions can be expressed via commas \leq

Thank you!