Adjunctions, limits

colimits

• a pair of
$$\infty$$
-natural transformations
 $M: id_B \Rightarrow uf \& \mathcal{E}: fu \Rightarrow id_A$

So that

Remark. In the the setting of (
$$\infty$$
, n)- or (∞ , ∞)-categories
this is "pseudo-style" adjunction
It is not most general adjunctions
But: its relationships to the equivalences
Lto the notions of (co-)limits

Lemma. An adjunction in a 2-category is preserved by any 2-functor

Example. Adjunction between 1-cats Cat C>hQCat A B MA N(A) L N(B) regarded as a nerve

Example. Quillen adjunctions

Prop. Given an adjunction
$$A \stackrel{f}{=} B$$
 between ∞ -cats
Then

•
$$\forall \infty - cat X$$

From $(X, A) = \int_{\mathcal{U}_{*}}^{f_{*}} From (X, B)$

•
$$\forall \infty - cat X$$

 $h Frum(X, A) = \int_{\mathcal{H}_{\mathcal{H}}} h Frum(X, B)$

•
$$\forall$$
 simplicial set $\bigcup_{f \in \mathcal{F}} f^{T}$

• If the ambient ∞ -cosmos is cartesian closed, then $\forall \infty$ -cat C $A^{C} \longrightarrow B^{C}$

Prop. (uniqueness of adjoints) $\cdot \text{If } f - u \quad \& f - u \quad \Longrightarrow \quad f \cong f'$ • Conversely, if $f \dashv u$ and $f \cong f' \Longrightarrow f' \dashv u$

Lemma. (minimal adjunction data)

$$f = B \iff \exists not. transf. id_{B} \Rightarrow uf so that fu \Rightarrow id_{A}$$
the triangle equality comparises are invertible:

$$f \Rightarrow fuf \Rightarrow f & u \Rightarrow ufu \Rightarrow u$$
Proof: (a) Obvious
(c) $\eta: id_{B} \Rightarrow uf & \mathcal{E}': fu \Rightarrow id_{A}$

$$g:= f \stackrel{fn}{\Rightarrow} fuf \stackrel{g!}{\Rightarrow} f & \mathcal{L} & \mathcal{V}:= u \stackrel{nu}{\Rightarrow} ufu \stackrel{ne'}{\Rightarrow} u$$
are isomorphisms

• Construct an adjunction
$$f \dashv u$$
 with unit g and counit
 ε'
• $\varepsilon \Rightarrow ua \xrightarrow{f^{\circ}} f_{\varepsilon} \Rightarrow f_{ua} \xrightarrow{\varepsilon'} f_{\varepsilon} \Rightarrow f_$

· By 2-of-6 property, we have all six morphisms being Bijections . Define $\mathcal{E} := A \xrightarrow{\mathcal{U}}_{\mathcal{E}'} \stackrel{\mathcal{H}}{\longrightarrow}_{\mathcal{F}} \stackrel{\mathcal{H}}{\longrightarrow}_{\mathcal{H}} \stackrel{\mathcal{H}}{\longrightarrow} \stackrel{\mathcal{H}}{\longrightarrow}_{\mathcal{H}} \stackrel{\mathcal{H}}{\longrightarrow$

so that

Corollary. (adjoint equivalences) Any equivalence can be promoted to an adjoint equivalence by modifying one of the 2-cells, i.e., the invertible 2-cells in an equivalence Can be chosen so as to satisfy the triangle equalities f, g are inverse equiv. m> f-1g & g-1f Proof: A = A = A = A g g f A = A $B \cong \downarrow B B$ $f \Longrightarrow fqf \Longrightarrow f \qquad d \qquad q \Longrightarrow qfq \Longrightarrow g$ So, by the previous lemma fand g fit into an adjunction <

Prop. Adjunctions are equivalence invariant $u: A \longrightarrow B$ admits a left adjeint $\iff \forall A' \cong A$ $B \cong B$ 00-cats the functor $u': A' \rightarrow B'$ admits a left adjoint Proof:] $f \dashv u$ with $A' \cong A$, $B' \cong B \dashv adjoint equiv.$ $A^{\prime} \stackrel{\sim}{\perp} A \stackrel{\sim}{\perp} B^{\prime} \stackrel{\sim}{\perp} B^{\prime}$ · Conversely, if u': A'~>A ~> B ~> B'admits a left alj f' then $f \Rightarrow f u f \Rightarrow f & u \Rightarrow u f u \Rightarrow$

Initial 2 terminals elements

Lemma (minimal) To define an initial element in an ∞ -cat A, it suffices to specify: • an element $i: 1 \longrightarrow A$ • a nat. transf. $A \xrightarrow{i \longrightarrow i}_{A} SD$ that $Ei: i \Longrightarrow i$ in hAyzim.

Proof:
$$\infty - \cot 1 \in \mathbb{K}$$
 is 2-terminal in the homotopy 2-cat
 $i: 1 \longrightarrow A$ is a section of $[:A \longrightarrow 1]$
So, $[:=id_1 \& g: 1 \longrightarrow]: i$ is an iso
We have a triangle

• To do this, it suffices to require an isomorphism $Ei:i \cong i$ (see the prop. above)

· Consider the horizontal composite and represent it as a vertical composite in the ways:

Remark. Being homotopy mitial is weaker than being mitial in the so-cat

> · But a homotopy initial element in a complete (~, 1)-cat defines an initial elements

Lemma.	If A has an initial element and $A \cong A'$
	then A' has an initial element and they are
	respected by the equivalence up to isomorphism
Proof:	$A \cong A' \sim an$ adjoint equivalence
	i it defines an initial
	$1 \perp A \perp A'$ element
By the r	iniqueness of initial elements, the equivalence $A' \longrightarrow A$
	mitial elements

Limits & colimits (co-) limits should be interpreted as homotopy ones in a-cat (Co-) limits of a diagram valued inside an ~- cat A in Some a - cosmos > indexed by a simpl. Set Jim an a-cat A in a generic ~-cosmol > indexed by an ∞-cat I and Valued in an ∞-cat A in a cartesian closed Def, (diagram ~-cat) 00-colmos For A CK, JE sSet define a diagram of shape $J \in \mathcal{K}_{cart.closed}$ I in A as an element $d: 1 \longrightarrow A^{J}$

- *kifunctory*

Apply difunctor to $1: J \longrightarrow 1$ $\Delta: A \longrightarrow A^{J} - constant diagram$ functor

Def. (limit & colinit functor)

Lemma. Products or coproducts in an ~-cat A also define define ones in its homotopy cat hA Proof; • If J'i a set $\Rightarrow A^{J} \cong \prod_{i} A$ $h\mathcal{K} \xrightarrow{h\operatorname{Fun}(1,-)} \operatorname{Cat} \leftarrow \operatorname{preserves produces} A \longmapsto hA$ $h(A^{\mathcal{J}}) \cong h(\prod_{\mathcal{J}} A) \cong \prod_{\mathcal{J}} hA \cong (hA)$ $\mathcal{J}_{\mathcal{J}} a set$ So, $(hA)^{J} \cong h(A^{J}) \stackrel{\checkmark}{\leftarrow} \stackrel{\perp}{\Delta} \stackrel{\wedge}{-} \stackrel{h}{h} A \quad \text{Fut } J = \emptyset \checkmark$ lim

The definition is insufficiently general! Def. (absolute lifting diagram) Given a cospon C= 3 A = F B in a 2-cat An absolute left lifting of g through f is given by a 1-cell l L L-cell λ : $C \xrightarrow{e}_{f \lambda} \downarrow_{f} Jf$ S.t. $\begin{array}{c} X \xrightarrow{b} B \\ c \downarrow & f \downarrow X \downarrow f = \\ c \xrightarrow{g} A \end{array} \begin{array}{c} X \xrightarrow{b} B \\ \downarrow \exists \uparrow \uparrow X \downarrow f = \\ c \xrightarrow{g} A \end{array}$ Any 2-cell X factors through (l, λ)

"Absolute" means

Lemma. Left (right) lifting diagrams are stable under restriction of their domain elject: If $(l, \lambda) - \alpha l_S$ left lifting of g through, then $\forall c : X \rightarrow C$ $(lc, \lambda c)$ defines an absolute left lifting of gc through f $X \xrightarrow{c} C \xrightarrow{f \lambda} \int_{f}^{B} \int_{A}^{B}$

Example: $id_B \Rightarrow uf$ is the unit of f - u(f, n) defines an absolute left lifting diagram A JE J $\alpha: fb \Rightarrow \alpha \land \beta: b \Rightarrow u\alpha$ Proof:

$$f_{x} \qquad f_{x} \qquad f_{x$$

These univ. properties are preserved under restriction. It mativates

Def. (limit & colimit) \mathcal{A} colimit of a family of diagrams $d: D \longrightarrow \mathcal{A}^{J}$ of shape J in an ∞ -cat \mathcal{A} is given by an absolute left lifting diagram

æ, comprised of a generalized element colimd: D->A α colimit cone η ; $d \Longrightarrow \triangle$ colimid

Dually, $\begin{array}{c} \text{limd} & A \\ \downarrow & \downarrow & \downarrow \\ D & & \downarrow & \downarrow \\ & & & & J \end{array}$ a limit of a family of diagrams d: D->A'of shape I in an on-cart A $\mathcal{E}: \Delta limit \Rightarrow d - \alpha limit cone$

Example An initial element i: 1-A can be regarded as a colimit of the empty diagram The constant diagram functor: $: A \longrightarrow A^{\mathcal{I}} = A^{\mathcal{I}} = 1$

We want: an initial element defines an absolute left lifting diagram whose 2-cell is identity But the existence of Scallow from initiality of $i: 1 \rightarrow A$ among all generalized elements $f: X \rightarrow A$

Example (exercise) In a cartesian closed ∞ -cosmos, $i: 1 \rightarrow A$ can be regarded as a limit of ida: A -> A Theorem Right adjoints preserve limits Proof: .] A admits limits of d: 1->A $\lim_{f \to 0} \frac{1}{f} = \frac{1}$ $\cdot f - u \longrightarrow f - u^{j}$. Show that $\lim_{d \to A} \frac{u}{|\Delta|} \xrightarrow{B} i again an absolute tight$ $\lim_{d \to A} \frac{|\Delta|}{|\Delta|} \xrightarrow{B} B^{2} \qquad \text{lifting diagram}$

Consider_

· Add a square to the right hand side, comparing with f

· Add a square to the right hand side, composing with u

Corollary Équivalences preserve Cimits Moreover, Prop. An equivalence f: A ~> B preserves, reflects and creates limits and colimits Proof: Prove that f' reflects limits and colimits • Consider a family of diagrams $d: K \longrightarrow A^{T}$ that admits limits in B $k \xrightarrow{d} A^{J} \xrightarrow{d} B^{J}$ after comp. with $A \cong B$

· The composite 2-cell

again defines an absolute right lifting diagram

The min. prop. can be verified

