Adjunctions, limits
ℓ
colimits

Def_ An adjunction $A \underset{\sim}{\stackrel{f}{\underset{\sim}{\sim}} B}$ between ∞-categories is comprised of:

- a pair of ∞^{x}-categories $A \& B$
- a pair of ∞-functor

$$
u: A \rightarrow B \quad \& \quad f: B \rightarrow A
$$

- a pair of ∞-natural transformations

$$
\eta: i d_{B} \Rightarrow u f \quad \& \quad \varepsilon: f u \Rightarrow i d_{A}
$$

So that

$$
\begin{aligned}
& B=B \\
& f=f(\mu \Downarrow \varepsilon=A
\end{aligned}=f\left(\begin{array}{l}
B \\
= \\
A^{L}
\end{array}\right.
$$

$u \stackrel{\eta-}{\longrightarrow} x f u \stackrel{-\varepsilon}{\mapsto} u \quad f^{-\eta} f(x f \stackrel{\varepsilon-}{\longmapsto} f$

Remark. In the the setting of (∞, n) - or (∞, ∞)-categories this is "pseudo-style" adjunction

$$
\uparrow
$$

It is not most general adjumetions
But: its relationships to the equivalences

$$
\&
$$

to the notions of (co)limits

Lemma. An adjunction in a 2 -category is preserved by any 2-functor

Example. Adjunction between 1-cats

Example. Quillon adjunctions

Prop. Given an adjunction
Then

- $\forall \infty$-cat X

$$
\operatorname{Fun}(X, A) \underset{u_{*}}{\stackrel{f_{*}}{\perp}} \operatorname{Fun}(X, B)
$$

- $\forall \infty-$ cat X
- \forall simplicial set U

$$
A^{U} \underbrace{\frac{f^{G}}{\frac{1}{G}}}_{x^{G}} B^{U}
$$

- If the ambient ∞-cosmos is cartesian closed, then $\forall \infty-$ cat C

$$
A^{C} \rightleftarrows B^{C}
$$

Prop. Adjunctions compose

Prop. (uniqueness of adjoints)

- If $f \dashv u \quad \& f^{\prime} \dashv u \Rightarrow f \cong f^{\prime}$
- Conversely, if $f \dashv u$ and $f \cong f^{\prime} \Rightarrow f^{\prime}-u$

Lemma. (Minimal adjunction data)

$\Longleftrightarrow \exists$ not. transf. $i d_{B} \Rightarrow u f$ so that $f u \Rightarrow i d_{A}$
the triangle equality composites are imertible:

$$
f \Rightarrow f u f \Rightarrow f \quad \& \quad u \Rightarrow u f u \Rightarrow u
$$

Proof: \Rightarrow Obvious

$$
\Leftarrow \cdot \eta: i d_{B} \Rightarrow u f \quad \& \quad \varepsilon^{\prime}: f u \Rightarrow i d_{A}
$$

$$
\varphi:=f^{f^{\prime} \eta} \Rightarrow f u f \stackrel{\varepsilon^{\prime} f}{\Rightarrow} f \quad \& \quad \psi:=u \stackrel{\eta u}{\Rightarrow} u f u \stackrel{u \varepsilon^{\prime}}{\Rightarrow} u
$$

are isomorphisms

- Construct an adjunction $f-1 u$ with unit η and counit
- $b \Rightarrow u a \stackrel{f_{0}-}{\leadsto} f b \Rightarrow f u a \stackrel{\varepsilon^{\prime}}{\leadsto} f b \Rightarrow f u a \stackrel{\varepsilon^{\prime}}{\Rightarrow} a \leadsto$

$$
f b \Rightarrow a
$$

- Let $\quad b: X \rightarrow B$

$$
\text { Let } a: X \rightarrow A
$$

- By 2-of-6 property, we have all six morphisus being bijections
- Define

$$
\varepsilon:=A \xlongequal{u / \varepsilon^{1} \Downarrow f \rrbracket_{k+2} f} A^{f}
$$

so that

- Form the pasting equality

- But ψ is invertible

So, $u \varepsilon \cdot q u=i d_{u}$

Corollary._(adjeint equivalences) Any equivalence com be promoted to an adjoint equivalence by modifying one of the 2-cells, i.e., the invertible 2-cells in an equivalence can be chosen so as to satisfy the triangle equalities f, g are inverse equiv. $\rightsquigarrow f \dashv g \& g \dashv f$
Proof:

$$
f \cong f g f \cong f \quad \& \quad g \cong g f g \cong g
$$

So, by the previous lemma fond g fit into an adjunction \triangle

Prop. Adjunctions are equivalence invariant $u: A \longrightarrow B$ admits a left adjoint $\Leftrightarrow \forall A^{\prime} \cong A$ $B^{\prime} \cong B$
the functor

$$
u^{\prime}: A^{\prime} \rightarrow B^{\prime}
$$

admits a left adjoint
Proof: :] $f \dashv u$ with $A^{\prime} \cong A, B^{\prime} \cong B$-adjoint equiv.

$$
A^{\prime} \underset{\sim}{\sim} A \underset{\sim}{\sim} B_{\sim}^{\stackrel{f}{\sim}} \underset{\sim}{\sim} B^{\prime}
$$

- Conversely, if $u^{\prime}: A^{\prime} \xrightarrow{\sim} A \xrightarrow{u} B \xrightarrow{\sim} B^{\prime}$ admits a left al j f^{\prime}

$$
f \rightarrow f u f \rightarrow f \& u \rightarrow x f f \underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\sim} A^{\prime} \underset{\sim}{\sim} A_{\sim}^{f^{\prime}} B \underset{\sim}{\sim} B
$$

Initial \& terminals elements
Def. An initial element in an ∞-cat A is a left adjoint to the unique functor! $: A \rightarrow 1$ A terminal element is a right adj.

Lemma.(minimal) T_{0} define an initial element in an ∞-cat A, it suffices to specify:

- an element $i: 1 \longrightarrow A$
- a nat. travel. $A \stackrel{!}{=} \stackrel{i}{=}$ SD that $\varepsilon i: i \Longrightarrow i$ in hAuzim.

Proof:- ∞-cat $1 \in K$ is 2-terminal in the hometopy 2-cat hR

- $i: 1 \rightarrow A$ is a section of !:A $\rightarrow 1$

So, $!i=i d_{1} \& \quad \eta: 1 \xrightarrow{\sim}!i$ is an $i s_{0}$ We have a triangle

$$
i \stackrel{i r}{\xrightarrow{i n}} i!i \stackrel{\varepsilon i}{\mapsto} i
$$

this dos not We want: $\varepsilon i=i d_{i}$

$$
\begin{aligned}
& !\stackrel{\eta!}{\mapsto}!i!\stackrel{!\varepsilon}{\longmapsto}!
\end{aligned}
$$

this hurls automatically

$$
!\varepsilon(a)=!(a)
$$

$\varepsilon: i!\longrightarrow i d$
$\eta: i d \Longrightarrow!i$

- To do this, it suffices to require an isomorphism

$$
\varepsilon_{i}: i \cong i \text { (see the prop, are) }
$$

- Consider the horizontal composite and represent it as a vertical composite in tho ways:

- So, $\varepsilon_{i} \cdot \varepsilon_{i}=\varepsilon_{i} \Rightarrow \varepsilon_{i}=i d_{i}$ since ε_{i} is an isomorphism by the assumption
Lemma. (uniqueness) Any two initial elements in an ∞-cat A are isomorphic in $h A$ and if $a \cong i$ in $h A \Rightarrow a$ is
Proof: . V left adjeints i and i^{\prime} to $!: A \rightarrow 1$ initial initial to are nat. isomorphic
- $\forall a: 1 \rightarrow A$ that is isomorphic to left adj to $!: A \rightarrow 1$ is itself a left adjoint
- A functor isomorphism $i \cong i^{\prime}$ gives $i \cong i^{\prime}$ in $h A$

Leman An element $i: 1 \rightarrow A$ is initial $\Leftrightarrow \forall f: X \rightarrow A$ \exists a unique d-cell with boundary

Proof. $\cdot i-1!\leadsto 1 \cong h F_{u n}(x, 1) \frac{i_{*}}{\frac{1}{1}} h F_{u n}(x, A)$
So, the constant functor $i!X \rightarrow A$ is initial in $h F_{\text {un }}(X, A)$

- Conversely, if $i: 1 \rightarrow A$ satisfies mir. property of the staceneent Then apply it to the id id: $A \rightarrow A$ any by Lemma above We are dine

Remark. Being hemstopy initial is weaker than being initial in the ∞-cat

- But a henustopy initial element in a Complete ($\infty, 1$)-cat defines an initial elements

Lemma. If A has an initial element and $A \cong A^{\prime}$ then A^{\prime} has an initial element and they are respected by the equivalence up to isomorphism
Proof: $A \cong A^{\prime} \leadsto$ an adjoint equivalence

By the uniqueness of initial elements, the equivalence $A^{\prime} \simeq A$ preserves initial elements

Limits \& colimits (co-) limits should be interpreted as homotopy ones in ∞-eat (C_{0}-) linus of a diagram valued inside an ∞-cat A in some ∞-cosmos
\longrightarrow indexed by a simple. Set I in an $\infty-\operatorname{cat} A$ in a generic ∞-cosmos
\rightarrow indexed by an ∞-cat I and Valued in an ∞-cat A
Def. (diagram ∞-cat) in a carterian closed ∞-commas
For $A \in \mathbb{K}, \quad J \in \operatorname{set}$ $I \in \mathbb{K}_{\text {cart.clued }} I$ in A as an element $d: 1 \rightarrow A^{J}$

$$
\begin{array}{cl}
\operatorname{sSet}^{\varphi \Phi_{x}} \mathcal{K} \longrightarrow \mathbb{K} & \mathbb{K} \Phi \times \mathbb{K} \longrightarrow \mathbb{K} \\
(J, A) \longmapsto A^{\top} & (J, A) \longmapsto A^{J}
\end{array}
$$

- bifunctors

Apply bifunctor to $!: J \longrightarrow 1$

$$
\triangle: A \longrightarrow A^{J}-\text { constant diagram }
$$ functor

Def. (limit \& colixit functor)

Lemma. Products or coproducts in an ∞-eat A ales define define ones in its homatopy cat hA

Proof. If $Y_{\text {is a set }} \Rightarrow A^{J} \cong \prod_{J} A$

$$
\begin{gathered}
h \mathcal{K} \xrightarrow{\left.h \operatorname{Fim}_{(1,-)}^{\longrightarrow}\right)} \text { Cat } \\
A \longmapsto \text { preserves products } \\
h\left(A^{J}\right) \cong h\left(\prod_{I} A\right) \cong \prod_{I} h A \cong(h A)^{J}
\end{gathered}
$$

So,

Fut $I=\varnothing<$

The definition is insufficiently general!
Def. (absolute lifting diagram)
Given a cospan $C \xrightarrow{g} A \notin \frac{f}{} B$ in a 2-cat An absolute left lifting of g through f is given by a 1-cell ℓ \& -cell λ :
 s.t.

Any 2-cell x factors through (l, λ)

An absolute right liftin of g through f :

$$
C \xrightarrow[g]{\stackrel{\rightharpoonup}{\sqrt{p}} \stackrel{B}{\longrightarrow} A}
$$

$$
\begin{aligned}
& X \xrightarrow{b} B \quad X \xrightarrow{b} B
\end{aligned}
$$

"Absolute" means
Lemma. Left (right) lifting diagrams are stable under restriction of their domain olject:
If (l, λ) - ass. left lifting of g through, then $\forall c: X \rightarrow C$ $(l c, \lambda c)$ defines an absolute left lifting of $g c$ through f

Example: $i d_{B} \Rightarrow u f$ is the unit of $f-t u$
(f, η) defines an abeslute left lifting diagram

Dually for ε : $f u \Rightarrow i d_{A}$

$$
A \xlongequal{u \rightarrow B} \begin{aligned}
& \| \varepsilon \\
& = \\
& =
\end{aligned}
$$

Proof:

$$
\begin{array}{ll}
X \longrightarrow B \\
\downarrow \downarrow \alpha \downarrow=B & x \rightarrow B \\
A=A & \downarrow=x \downarrow b \Rightarrow a \ln \beta: b \Rightarrow u a \\
A=A
\end{array}
$$

If $f-1 u$ then it is an adjunction and (u, ε) defines an absolute right lifting of id A through f
Conversely, the unit \& triangle identities of an adj: can be extracted from the univ. prop. of the right lifting diagram

In particular, colin $\rightarrow \Delta \rightarrow \lim$ define

These univ properties are preserved under restriction. It motivates

Def. (limit \& colimit) A colimit of a family of diagrams $d: D \rightarrow A^{J}$ of shape I in an $\infty-$ cat A is given by an absolute left lifting diagram

comprised of a generalized element colima: $D \rightarrow A$ α colimit cone $\eta ; d \Longrightarrow \Delta$ colima

Dually,

$\varepsilon: \Delta \lim d \Rightarrow d-a$ limit cone
a limit of a family of diagrams $d: D \rightarrow A^{J}$ of shape I in an ∞-eat A

Example An initial element $i: 1 \rightarrow A$ can be regarded as a colimit of the empty diagram
The constant diagram functor:

We want: an initial clement defines an absolute left lifting diagram whose 2 -cell is identity
But the existense $\&$ uniqueness of $\{$ follow from initiality of $i: 1 \rightarrow A$ among all generalised elements $f: x \rightarrow A$

Example (exams) In a cartesian closed ∞-ceros, $i: 1 \rightarrow A$ cam be regarded as a limit of id $A: A \rightarrow A$

Theorem Right adjoints preserve limits
Proof: .] A admits limits of $d: 1 \rightarrow A^{J}$

$$
\left.\underset{d}{\lim d \underset{\downarrow \lambda}{ } A}\right|_{\mathbb{V}} ^{\Delta}
$$

- $f-1 u \rightsquigarrow f^{y}-1 u^{y}$
- Show that

is again an absolute right lifting diagram
- Consider

- Add a square to the right hand side, composing with f

- Add a square to the right hand side, composing with u

apply a triangle identity of $f^{y}-1 u^{Y}$
So, x factors through the composite of ξ and η is left $\begin{aligned} & \text { as an exercise }\end{aligned}$ as an exercise

Corsllary_Equivalences preserve limits
Moreover,
Prop. An equivalence $f: A \xrightarrow{\sim} B$ preserves, reflects and creates limits and colimits
Pref: Prove that f reflects limits and calimits

- Consider a family of diagrams $d: K \rightarrow A^{\text {I that admits }}$ limits in B
 limits in B after comp. with $A \cong B$
- The composite dell

The univ. prop. can be verified
again defines
an absolute right lifting diagram

Thank youe!

