E - some cat with a Grothend. top T $U \in (SPre(\mathcal{E})) = PSh(\mathcal{E})^{\Delta T}$ Un is a presheaf of sets on E Def. U- V is called a hypercover if 0∆[n)→J+(X) every $\partial \Delta[n] \cdot \chi \longrightarrow [7]$ V - - V $\Delta[n] \longrightarrow V(X)$ $\Delta[n] \cdot X \longrightarrow \overline{V}$ there exists a solution (0;) after refining to some $\partial \Delta^{m}[n] \longrightarrow \mathcal{G}(X_{i})$ $\Delta[n] \longrightarrow \overline{V}(X_i)$ $\frac{\text{Def.}}{\text{J}} = \sqrt{J} = \sqrt{C} \in Sh(E) - a$ hypercover $\overline{U_n} \longrightarrow (\operatorname{cosk}_{n-1}\overline{U})_n \times \overline{V_n} \\
 \operatorname{cosk}_{n-1}\overline{U})_n \\
 \operatorname{cosk}_{n-1}\overline{U})_n$ in $\operatorname{PSh}(\mathcal{E})$ are local epimorphisms ÿ tn∈N

 $\operatorname{cook}_{n-1} \overline{V} \longrightarrow \operatorname{cosk}_{n-1} \overline{V}$ <u>Remark</u>. If $Sh(\mathcal{E})$ has enough points then $f: T \rightarrow T$ in is a hypercover if all stalks are acyclic ssh(E) Kan fibrations Recall, a point of a topos E is a geom morphism, $x: Set \xrightarrow{x^*} E$ A topos E has enough points if isomorphy can be tested by staller, i.e. if { are jointly conservatives F(g) - iso = g - isoF is conservotive Example; Sh(X) where X is a topolog space The main example of hypercover ; (\mathcal{B},T) Suppose that T-cover

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Theorem . The Bousfield localization of $SPSh(E)$ with respect to the class of Each hypercovers $\overline{U} \longrightarrow \overline{U}$ exists: $L_SPSh(E)$ Dealer Hill medi proper camb. Simpl. mod. cont.
and I-a set of marphisms in M LI M exists and it is a simplimed. cat. Cech T-hypercovers form a set as E is small ~
$\begin{array}{llllllllllllllllllllllllllllllllllll$
for $f: T \longrightarrow T$ an object \mathcal{L}_{T} Let $\mathcal{T}_{n}^{T}(X, x)$ be the sheaf $-n$ of $\mathcal{T}_{n}(X, x)$

in the T-topology restricted to E/V Let W_{τ} be $\{S: X \rightarrow Y \text{ in SPSh}(\mathcal{E})$ S.t. $S_{\chi} : \mathcal{T}_{n}^{\mathsf{T}}(X(\mathcal{V}), x) \xrightarrow{\Xi} \mathcal{T}_{n}^{\mathsf{T}}(Y(\mathcal{V}), x)$ $\forall \nabla \forall basepoint x \in X(T)$ (W_T, ObjCof) - a model structure ou st&h(E) A the class of the class of brations Jardine-Joyal model structure Neorem (Dugger-Hollunder-Isaksen) $\mathcal{L}_{T} SPSh(\mathcal{L}) \xrightarrow{id} SPh_{y}(\mathcal{L})$ Example A T-sheaf of sets on G, viewed as a presheaf of simpl. set if fibrant If T is subranamical (i.e., every representable prechecfos in force a sheaf) the Tomeda embedding $\mathcal{E} \longrightarrow PSh(\mathcal{E})$

factors through the category of fibrant objects for the T-local model cat an sPSh (b) Nisnevich's topology S - quasi compact & quasi-separated scheme Smg - the cast of famitely presented encosth schemes over S $Def \{ u_{x} : X_{x} \longrightarrow X \} - \alpha$ Nisnevich cover if · each morphism 12 is étale • $\forall x \in X \quad \exists \alpha, \exists y \in X_{\alpha} \quad S.t. \quad \mathcal{U}_{\alpha}(y) = x$ A point • $k(x) \cong k(y) - \alpha$ map of residue fields Example $k - \alpha$ field of char $\neq 2$ and a $\notin k$ $\begin{array}{c} A^{1} \setminus \{\alpha\} \xrightarrow{\infty \mapsto \infty} A^{1} \\ A^{4} \setminus \{o\} \xrightarrow{x \mapsto x^{2}} A^{1} \end{array} \end{array}$ etale This étale covering is Nisnevich <=> a il a square in R

Example Bariski cours are in particula? Nishwich covers: e.g., the unal covering of IPie Nisnewich $\operatorname{Def}_{X} V_{-}$ → T il called an elementary distinguished (Nisnevich) square U i - X if i-a Bariski epen immeruhan p - étale $\mathcal{P}^{-1}(X - \mathcal{T}) \longrightarrow X - \mathcal{T} - \mathcal{T} \rightarrow \mathcal{Y}$ Lemma. {i: [r-> X, p: [r-> X } is a Nisneurich cover of X in the above setting $\frac{\operatorname{Mar} \operatorname{Example}:}{A^{1} - \{a\}} \xrightarrow{\mathfrak{X} \to \mathfrak{X}} A^{1}}{A^{1} - \{b\}} \xrightarrow{\mathfrak{X} \to \mathfrak{X}^{2}} A^{1}$ class not come from $\begin{array}{l} \alpha m \ elementary \ dist,\\ Square\\ \hat{Y} \ \alpha = 0 \end{array}$ When $a \neq 0$ it is so. Def. $T = Nis \longrightarrow$ we get the Nisnevich - local model category L_{Nis} sPSh (Sm_S) Spcs

 $Fib (Spc_S) \stackrel{\text{def}}{=} spaces$ A space is a presheat of Kom complexes on Sms which is a sheaf in Nisnevich topology A tool for verifying Nisnevich fibrancy in practice Prop. S-metherian scheme of finite krull dimension. A simplicial presheaf Four Sms 2 Nisnerich-fibrant (----) Helem. dist. square $\begin{array}{cccc} & \mathcal{T}_{X} & \mathcal{T} & \longrightarrow & \mathcal{T} & \text{the natural welp} \\ & & & \mathcal{T}_{P} & & & \mathcal{T}_{P} \\ & & & & \mathcal{T}_{P} & & \mathcal{T}_{P} & \mathcal{T}_$ is a WE of simplicial sets and F(Ø) is a final object The A-himotopy category_ Def. Let I be the class of maps

 $/\!\!/_{S}^{1} \times X \longrightarrow X$ $in L_{Viy} sPSh(Sm_S)$ X ranges aver all objects of Smg Charge a subjet JCI containing maps $\mathbb{A}^{4} \times \times \longrightarrow \times$ X ranges over a representative of each isomorphism class of Sms Def. The A-hannotopy theory of Sig the left Boufield localization of LisSPSh(Sm) with resp. to J. LAI LNis SPSh (Sms) Ho (LAILNY SPSh (Sms)) is called the A-hamatopy contegory of S Spec At Priep. The Boucfield localization Spcs coists

Remark. A simplicial presheaf X E SPSh (Sms) if 1/AI-space if it 1. takes values in Kom complexes (i.e., it & fibrant Z. satisfies Nisnewich hyperdescent in sPSh (Sm_S) 3. $if X(T) \longrightarrow X(IA^{1} \times T)$ (i.e., it is fibrant $in Spe_{S}$) iWE of simplicial sets $\forall TESm_{S}$ Spc_{S}^{#1}_{< ____> & /A¹ _____> & Spc_S,* X I > Xt a presheaf the pointed presheaf of spaces obtained by adding a disjoint base point ut hereint a Def. The WE in Spc 3 are called 1A¹-weak equiv. er 14¹-becal weak equivalences Def. Let fig: X -> Y be maps of simplicial prechement We say that f, g are 1At-hamatopic if I a map $H: F \times /A^{1} \longrightarrow G \quad S.t. \quad H \circ (id_{F} \times i_{0}) = f$ $H \circ (id_{F} \times i_{1}) = g$

· · · · · · · · · · · · · · · · · · ·	,	
	inclusions of points	A^{1}