Dynamics and Multivalued Croups

Mikhail Kornev

Steklov Mathematical Institute of RAS

SIMC Youth Race
March 13-17, 2023

Introduction

- In different areas of research, multivalued products on spaces appear
- The literature on multivalued groups and their applications is large and includes articles since XIX century mostly in the context of hypergroups
- In 1971, S. P. Novikov and V. M. Buchstaber gave the construction, predicted by characteristic classes. This construction describes a multiplication, with a product of any pair of elements being a non-ordered multiset of n points

Introduction

- It led to the notion of n-valued groups which was given axiomatically and developed by V. M. Buchstaber
- At present, a number of authors are developing n-valued (finite, discrete, topological or algebra geometric) group theory together with applications in various areas of Mathematics and Mathematical Physics

Introduction

- Since 1996, V. M. Buchstaber and A. P. Veselov and became develop some applications of n-valued group theory to discrete dynamical systems
- In 2010, V. Dragović showed the associativity equation for 2-valued group explains the Kovalevskaya top integrability mechanism

Introduction

We will talk about

- Symbolic Dynamics
- Tiling theory
- Multivalued Group theory
- their connections and some author's results

Combinatorics on Words Preliminaries

- Alphabet A is a finite set, consisting of letters
- A^{*} stands for the monoid of finite words in an alphabet A
- A^{ω} stands for the set of right infinite words
- A word $w \in A^{\omega}$ is periodic if it is of the form $w=u I V V \ldots$ for some $u, v \in A^{*}$
- A word $w \in A^{\omega}$ is aperiodic (or, quasi-periodic) if it is not periodic
- Factor is a finite continuous subword u in $w=\ldots u \ldots$
- Denote by $|w|$ the length of a word $w \in A^{*}$

Combinatorics on Words Preliminaries

- Let A and B be alhabets. A morphism is a map $\mathcal{F}: A^{*} \rightarrow B^{*}$ satisfying

$$
\mathcal{F}(x y)=\mathcal{F}(x) \mathcal{F}(y)
$$

for all words $x, y \in A^{*}$, i. e., \mathcal{F} is a homomorphism of monoids

- A morphism is defined by the images $\mathcal{F}(a)$ of the letters $a \in A$

Combinatorics on Words Preliminaries

- In some cases, one can define a limit

$$
a \rightarrow \mathcal{F}(a) \rightarrow \mathcal{F}(\mathcal{F}(a)) \rightarrow \ldots \rightarrow \mathcal{F}^{\infty}(a)
$$

- It is easy to see that the word $w=\mathcal{F}^{\infty}(a)$ will be a fixed point, i. e., $\mathcal{F}(w)=w$

Examples of Morphisms

Example (Fibonacci Morphism)

$$
\mathcal{F}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}, 0 \mapsto 01,1 \mapsto 0
$$

The infinite Fibonacci word $\Phi:=\mathcal{F}^{\infty}(0)$ is
$\Phi=01001010010010100101001001010010 \ldots$

Examples of Morphisms

Example (Thue-Morse Morphism)

$$
\mathcal{F}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}, 0 \mapsto 01,1 \mapsto 10
$$

The Thue-Morse sequence $\mathcal{F}^{\infty}(0)$ is

$$
T=01101001100101101001011001101001 \ldots
$$

Examples of Morphisms

Example (Tribonacci Morphism)

$\mathcal{F}:\{a, b, c\}^{*} \rightarrow\{a, b, c\}^{*}$

$$
\mathcal{F}:\left\{\begin{array}{l}
a \mapsto a b c \\
b \mapsto a c \\
c \mapsto b
\end{array}\right.
$$

The infinite tribonacci word $\mathcal{F}^{\infty}(a)$ is
abcacbabcbacabcacbacabcb...

The Factor Complexity

- The factor complexity of an infinity word w is the function $f_{w}(n)$ defined as the number of its factors of length n
- One can show that for an infinite word w there exists $C \in \mathbb{N}$ such that

$$
f_{w}(n) \leqslant C
$$

for evey $n \in \mathbb{N}$

The Factor Complexity

Theorem (M. Morse and G. Hedlund, 1940)

Let w be an aperiodic infinite word. Then for any $n \in \mathbb{N}$

$$
f_{w}(n) \geqslant n+1
$$

Definition

In the case of equality $f_{w}(n)=n+1$, a word w is called Sturmian

Some easy properties:

- $f_{w}(n) \leqslant|A|^{n}$ where A is an alphabet
- $f_{w}(n)$ is non-decreasing function

Once Again: The Fibonacci Word

- Consider the Fibonacci word constructed above

$$
\Phi=01001010010010100101001001010010010100 \ldots
$$

- There is another way to construct Φ
- Consider the following recursive sequence $\left\{\Phi_{k}\right\}$ of finite Fibonacci words

$$
\Phi_{k+1}=\Phi_{k} \Phi_{k-1}, \text { where } \Phi_{0}=0, \Phi_{1}=01
$$

- $\left\{\left|\Phi_{k}\right|\right\}$ is the Fibonacci sequence:

$$
\left|\Phi_{k}\right|=F_{k+2}, F_{k+2}=F_{k+1}+F_{k}, \quad F_{0}=0, \quad F_{1}=1
$$

- In this setting $\Phi=\lim _{n} \Phi_{n}$

$$
\begin{aligned}
\Phi_{2} & =010 \\
\Phi_{3} & =01001 \\
\Phi_{4} & =01001010
\end{aligned}
$$

The Fibonacci Word is Sturmian

- It turns out that the Fibonacci word is Sturmian
- It follows from the geometric interpretation of Sturmian words

$$
\begin{gathered}
y(x)=\psi x, \psi=1 / \varphi, \varphi=(1+\sqrt{5}) / 2 \\
\Phi_{5}=0100101001001
\end{gathered}
$$

Some Properties of the Fibonacci Word

- The factors 11 and 000 are absent in Ф
- The last two letters of a Fibonacci word are alternately 01 and 10
- The nth digit of Φ is

$$
2+\lfloor n \varphi\rfloor-\lfloor(n+1) \varphi\rfloor
$$

where $\varphi=(1+\sqrt{5}) / 2$ is the golden rartio

The Fibonacci Word and Quasi-Quasicrystals

Cut-and-projection method gives

$$
y(x)=\psi x+\frac{1-\psi}{2}, \psi=1 / \varphi, \varphi=(1+\sqrt{5}) / 2
$$

Balanced Words

Definition

An infinity word w in the alphabet $\{a, b\}$ is called balanced if for any two factors u and v of the same length n

$$
\|\left. u\right|_{a}-|v|_{a} \mid \leqslant 1
$$

where $|-|_{a}$ denotes the number of letters a (the Hamming weight).

- The Fibonacci word is an example of balanced word $\Phi=01001010010010100101001001010010010100 \ldots$
- For the Thue-Morse word, however, it is not the case: see, e. g., 00 and 11

$$
T=01101001100101101001011001101001 \ldots
$$

Geometric Words

Definition

An infinite word in two-letter alphabet is called geometric if it encodes intersections of a fixed line $y=\alpha x+\rho$ with vertical and horizontal lines of integer lattice

- If α is rational the dynamics is periodic
- If α is irrational the one is qusi-periodic

Sturmian Words are Geometric

Corollary

For an infinite word in 2-letter alphabet the following conditions are equivalent

- $f_{w}(n)=n+1$
- w is aperiodic and balanced

Markov's Result

Theorem (A. A. Markov, 1882)

Let $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$ be the continued fraction expansion, $\alpha \in(0,1)$. Then the word $S(\alpha)$ encoded by a line $y=\alpha x$ can be written as follows

$$
S(\alpha)=\lim _{k} S_{k}(\alpha)
$$

where

$$
S_{k}=S_{k-1}^{a_{k}} S_{k-2}
$$

with the initial conditions $S_{-1}=b$ u $S_{0}=a$. The letters a and b correspond to vertical and horizontal intersections respectively

For the word length sequence $\left\{\left|S_{k}\right|\right\}$ we have $\left|S_{-1}\right|=1$, $\left|S_{0}\right|=1$ and

$$
\left|S_{k}\right|=a_{k}\left|S_{k-1}\right|+\left|S_{k-2}\right|
$$

Markov's Result

Example

- Consider the line $y=\psi x$ where $\psi=1 / \varphi, \varphi=(1+\sqrt{5}) / 2$

$$
\psi=\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}
$$

- In this case, $S_{n}=S_{n-1} S_{n-2}$ - the Fibonacci word

Tilings

Definition

A simple tiling of \mathbb{R}^{d} :

- There are only a finite number of tile types, up to translation
- Each tile is a polytope
- Tiles meet full-facet to full-facet

The ε-closeness

Definition

We say that tilings T_{1} and T_{2} are ε-close if they are agree on a ball of radius $1 / \varepsilon$ around the origin, up to translation of size ε or less

Tiling Spaces

Definition

- The orbit of a tiling T is the set $\mathcal{O}(T):=\left\{T-x \mid x \in \mathbb{R}^{d}\right\}$ of translates of T
- A tiling space Ω is a set that is closed under translation, and complete in the tiling metric
- The hull Ω_{T} of a tiling T is the closure of $\mathcal{O}(T)$ with respect to the ε-closure property

Tiling Spaces

Example

- Consider a simple 1 -dimensional tilling T_{0} with just one kind of tile. Suppose its length is 1 and its color is blue
- Obviously, $T_{0}=T_{0}-1$. So, $\Omega_{T_{0}}$ is a circle

Tiling Spaces

Example

- Consider an 1-dimensional tilling T_{1} with one red tile of length 2 and other blue tiles of length 1
- Any tiling with one red tile is in $\mathcal{O}\left(T_{1}\right)$, and hence in $\Omega_{T_{1}}$
- Tilings with no red tiles are also in $\Omega_{T_{1}}$ by simple reasons
- So, $\Omega_{T_{1}}$ looks like the circle $\Omega_{T_{0}}$ and the line $\mathcal{O}\left(T_{1}\right)$ with both ends of the line asymptotically approaching the circle

Tiling Spaces

Tiling Spaces

Theorem

If T is a simple tiling then Ω_{T} is compact

- For a tiling T one can approximate the space Ω_{T} via CW complexes Γ_{n} from the Giähler's construction
- There is a sequence of forgetful maps $f_{n}: \Gamma_{n+1} \rightarrow \Gamma_{n}$. The space Γ_{n} knows about surrounding n layers in some sence
- Hence, one can form an inverse limit and it will homeomorphic to Ω_{T}

$$
\Omega_{T}=\lim _{\leftrightarrows} \Gamma_{n}
$$

- In the case of substitution tilings, it is more convenient to use the Anderson-Putnam construction of $\Gamma_{n}^{\prime} s$

Topological Invariants of Tiling Spaces

- Ω_{T} has one connected component, but uncountably many path-component
- Each path component in a tiling space is an orbit under \mathbb{R}^{d}. Such an orbit of an aperiodic tiling is contractible, so $\pi_{n}\left(\Omega_{T}\right)=0$ and $H_{n}\left(\Omega_{n} ; A\right)=0$ for $n>0, A$ is abelian
- Čech cohomology does better

$$
\check{H}^{*}\left(\lim _{\leftrightarrows} \Gamma_{n}\right) \cong \underset{\longrightarrow}{\lim } \check{H}^{*}\left(\Gamma_{n}\right) \cong \underset{\longrightarrow}{\lim } H^{*}\left(\Gamma_{n}\right)
$$

Example

\breve{H}^{1} of the Fibonacci tiling space is $\mathbb{Z} \oplus \varphi \mathbb{Z}, \varphi=(1+\sqrt{5}) / 2$

Prodefinition of n-valued Groups

Prodefinition

A hypergroup is a promonoidal category structure on a discrete poset X, whose promultiplication $X \times X \rightarrow \mathcal{G}(X)$ takes values in the 2 -category of non-empty groupoids, with some additional groupal properties

Recall, a promonoidal category is a category \mathcal{C} together with

- A profunctor (promultiplication) $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$
- A profunctor (prounit) J: $1 \rightarrow \mathcal{C}$
- Associativity $P \circ(P \times 1) \cong P \circ(1 \times P)$
- Unit isomorphisms $P \circ(J \times 1) \cong 1$, and $P \circ(1 \times J) \cong 1$

A fancy arrow $A \rightarrow B$ means a functor $B^{\text {op }} \times A \rightarrow$ Set. The composition of $F: A \rightarrow B$ and $C_{1}: B \rightarrow C$ is defined to be

$$
(G \circ F)(c, a)=\int^{a \in A} F(b, a) \otimes C_{1}(c, b)
$$

Symmetric Powers of a Space

- For a topological space X, let $(X)^{n}$ denote its n-fold symmetric power, i. e., $(X)^{n}=X^{n} / \Sigma_{n}$ where the symmetric group Σ_{n} acts by permuting the coordinates
- An element of $(X)^{n}$ is called an n-subset of X or just an n-set. It is a subset with multiplicities of total cardinality n

Example

The spaces $(\mathbb{C})^{n}=\mathbb{C}^{n} / \Sigma_{n}$ and \mathbb{C}^{n} are identified using the map $\mathcal{S}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ whose components are given by

$$
\left(z_{1}, z_{2}, \ldots, z_{n}\right) \rightarrow \sigma_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right), 1 \leqslant r \leqslant n,
$$

where σ_{r} is the r-th elementary symmetric polynomial

n-valued Group Structure

An n-valued multiplication on X is a map
$\mu: X \times X \rightarrow(X)^{n}: \mu(x, y)=x * y=\left[z_{1}, z_{2}, \ldots, z_{n}\right], z_{k}=(x * y)_{k}$

- Associativity. The n^{2}-sets

$$
\begin{aligned}
& {\left[x *(y * z)_{1}, x *(y * z)_{2}, \ldots, x *(y * z)_{n}\right],} \\
& {\left[(x * y)_{1} * z,(x * y)_{2} * z, \ldots,(x * y)_{n} * z\right]}
\end{aligned}
$$

are equal for all $x, y, z \in X$

- Unit. $e \in X$ such that $e * x=x * e=[x, x, \ldots, x]$ for all $x \in X$
- Inverse. A map inv: $X \rightarrow X$ such that

$$
e \in \operatorname{inv}(x) * x \text { and } e \in x * \operatorname{inv}(x) \text { for all } x \in X
$$

The map μ defines an n-valued group structure on X if it is associative, has a unit and an inverse

Example: 2-valued Giroup Structure on \mathbb{Z}_{+}

- Consider the semigroup of nonnegative integers \mathbb{Z}_{+}
- Define the multiplication $\mu: \mathbb{Z}_{+} \times \mathbb{Z}_{+} \rightarrow\left(\mathbb{Z}_{+}\right)^{2}$ by the formula $x * y=[x+y,|x-y|]$
- The unit: $e=0$
- The inverse: $\operatorname{inv}(x)=x$.
- The associativity: one has to verify that the 4 -subsets of \mathbb{Z}_{+}

$$
[x+y+z,|x-y-z|, x+|y-z|,|x-|y-z||]
$$

and

$$
[x+y+z,|x+y-z|,|x-y|+z,||x-y|-z|]
$$

are equal for all nonnegative integers x, y, z

Example: n-valued Giroup Structure on

- Define the multiplication $\mu: \mathbb{C} \times \mathbb{C} \rightarrow(\mathbb{C})^{n}$ by the formula

$$
x * y=\left[\left(\sqrt[n]{x}+\varepsilon^{r} \sqrt[n]{y}\right)^{n}, \quad 1 \leqslant r \leqslant n\right],
$$

where $\varepsilon \in \mathbb{Z}_{n}$ is a primitive nth root of unity

- The unit: $e=0$
- The inverse: $\operatorname{inv}(x)=(-1)^{n} x$
- The multiplication is described by the polynomial equations

$$
p_{n}(x, y, z)=\prod_{k=1}^{n}\left(z-(x * y)_{k}\right)=0
$$

For instance,

$$
\begin{gathered}
p_{1}=z-x-y, \quad p_{2}=(z+x+y)^{2}-4(x y+y z+z x), \\
p_{3}=(z-x-y)^{3}-27 x y z
\end{gathered}
$$

Homomorphisms of n-valued Ciroups

Definition

A map $f: X \rightarrow Y$ is called a homomorphism of n-valued groups if

- $f\left(e_{X}\right)=e_{Y}$
- $f\left(\operatorname{inv}_{X}(x)\right)=\operatorname{inv}_{Y}(f(x))$ for all $x \in X$
- $\mu_{Y}(f(x), f(y))=(f)^{n} \mu_{X}(x, y)$ for all $x, y \in X$

So, the class of all n-valued groups forms a category MultValGrp

Reducible n-valued Groups

- For each $m \in \mathbb{N}$, an n-valued group on X, with some multiplication μ, can be regarded as an mn-valued group by using as the multiplication the composition

$$
X \times X \xrightarrow{\mu}(X)^{n} \xrightarrow{(D)^{m}}(X)^{m n}, \quad \text { where } D \text { is diagonal }
$$

Definition

An n-valued group on X is called reducible if there is an isomorphism $f: X \rightarrow Y$ where Y is an n-valued group with a multiplication $\mu_{n}=\mu_{k}^{m}, n=m k$

Kernels and Images

Lemma

Let $f: X \rightarrow Y$ be a homomorphism of n-valued groups. Then

- $\operatorname{ker}(f)=\left\{x \in X \mid f(x)=e_{Y}\right\}$ is an n-valued group
- $f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow(f)^{n}\left(z x_{1}\right)=(f)^{n}\left(z x_{2}\right)$ for all $z \in \operatorname{ker}(f)$
- Suppose that the map inv : $X \rightarrow X$ is uniquely defined. Then $\operatorname{ker}(f)=\{e\}$ if and only if any equality $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$
- $\operatorname{Im}(f)=\{y \in Y \mid y=f(x), x \in X\}$ is an n-valued group

Coset Croups

- Let C_{1} be a (1-valued) group with the multiplication μ_{0}, the unit e_{G}, and $\operatorname{inv}_{G}(u)=u^{-1}$
- Let $A \hookrightarrow$ Aut G be a finite group of order n
- Denote by X the quotient space C_{1} / A of G, and denote by $\pi: C_{1} \rightarrow X$ the quotient map
- Define the n-valued multiplication $\mu: X \times X \rightarrow(X)^{n}$ by the formula

$$
\mu(x, y)=\left[\pi\left(\mu_{0}\left(u, v^{a}\right)\right) \mid a \in A\right]
$$

where $u \in \pi^{-1}(x), v \in \pi^{-1}(y)$ and v^{a} is the image of the action of $a \in A$ on $v \in G$

Theorem

The multiplication μ defines some n-valued coset group structure (G, A) with the unit $e_{X}=\pi\left(e_{G}\right)$ and the non-ambiguity defined $\operatorname{map} \operatorname{inv}(u)=\pi\left(u^{-1}\right)$ where $\pi(u)=x$

Coset Croups

Example

- Consider $G=\left\{a, b \mid a^{2}=b^{2}=e\right\}$
- The interchange of a and b is an element of order 2 of Aut C_{1}
- Then we have on the set $X=C_{1} / A=\left\{u_{2 n}, u_{2 n+1}\right\}, n \geqslant 0$ where

$$
u_{2 n}=\left[(a b)^{n},(b a)^{n}\right], u_{2 n+1}=\left[a(b a)^{n}, b(a b)^{n}\right]
$$

- The multiplication:

$$
u_{k} * u_{\ell}=\left[u_{k+\ell}, u_{|k-\ell|}\right]
$$

- Thus, X is isomorphic to the 2 -valued group on \mathbb{Z}_{+} constructed above

n-valued Dynamics

Definition

An n-valued dynamics T on a space Y is a map $T: Y \rightarrow(Y)^{n}$

- If Y is a state space then the n-valued dynamics T defines possible states $T(y)=\left[y_{1}, \ldots, y_{n}\right]$ at the moment $(t+1)$ as a state function of y at the moment t

Example

(1) Consider

$$
F(x, y)=b_{0}(x) y^{n}+b_{1}(x) y^{n-1}+\cdots+b_{n}(x), x, y \in \mathbb{C} .
$$

(2) The equation $F(x, y)=0$ defines an n-valued dynamics

$$
T: \mathbb{C} \rightarrow(\mathbb{C})^{n}: T(x)=\left[y_{1}, \ldots, y_{n}\right]
$$

where $\left[y_{1}, \ldots, y_{n}\right]$ - n-set of roots of $F(x, y)=0$

n-valued Growth Function

- Let $T: Y \rightarrow(Y)^{n}$ be an n-valued dynamics. For any $y \in Y$ define the n-valued growth function $\xi_{y}: \mathbb{N} \rightarrow \mathbb{N}$ where $\xi_{y}(k)$ - the number of different points in the set $T^{k}(y)$

Problem

Characterize such n-valued dynamics T that functions $\xi_{y}(k)$ have polynomial growth for any $y \in Y$

polynomial growth

exponential growth

n-valued Actions

An action of n-valued group X on a space Y is defined by the map

$$
\varphi: X \times Y \rightarrow(Y)^{n}: \varphi(x, y)=x \cdot y=\left[y_{1}, \ldots, y_{n}\right]
$$

such that

- for any $x_{1}, x_{2} \in X$ and $y \in Y$ the following n^{2}-sets coincide:
$x_{1} \cdot\left(x_{2} \cdot y\right)=\left[x_{1} \cdot y_{1}, \ldots, x_{1} \cdot y_{n}\right]$ and $\left(x_{1} x_{2}\right) \cdot y=\left[z_{1} \cdot y_{1}, \ldots, z_{n} \cdot y\right]$
where $x_{2} \cdot y=\left[y_{1}, \ldots, y_{n}\right]$ и $x_{1} x_{2}=\left[z_{1}, \ldots, z_{n}\right]$
- $e \cdot y=[y, \ldots, y]$ for any $y \in Y$

n-valued Cyclic Dynamics

Definition

An n-valued group $X:=\langle x\rangle$ is called cyclic if it is generated by the only element $x \in X$

Definition

Consider n-valued dynamics $T: Y \rightarrow(Y)^{n}$ with $X=\langle a\rangle$. The generator a is called the generator of the cyclic dynamics T

Theorem (A. A. Gaifullin, P. V. Yagodovskii, 2007)

An n-valued dynamics T has a generator $a \in X$ if and only if there exists such a dynamics $T^{-1}: Y \rightarrow(Y)^{n}$ that for any y_{1}, $y_{2} \in Y$ the multiplicity of y_{2} in $T\left(y_{1}\right)$ equals the multiplicity of y_{1} in $T^{-1}\left(y_{2}\right)$

n-valued Cyclic Group Girowth Problem

- Let $X=\langle a\rangle$ be a cyclic n-valued group
- Then there is the left action of X on itself

$$
T: X \rightarrow(X)^{n}, T(x)=a \cdot x
$$

- Recall $\xi_{a}(k)$ is a number of different elements in $T^{k}(a)$

Notation

Denote by $\mathbb{G}_{\varphi}\left(G_{1}\right)$ the n-valued group obtained from the construction above for some ordinary group C and some automorphism group element φ

The Case of $\mathbb{Z} / 3 * \mathbb{Z} / 3$ with $\mathbb{Z} / 2<$ Aut

Proposition

For the group $\mathbb{Z} / 3 * \mathbb{Z} / 3=\left\langle a, b \mid a^{3}=b^{3}=1\right\rangle$ and the automorphism φ : $a \mapsto b$ the corresponding 2-valued group $\mathbb{G}_{\varphi}(\mathbb{Z} / 3 * \mathbb{Z} / 3)$ has the growth function
$\xi_{[a, b]}(k)=F_{k+3}-1=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k+3}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+3}\right)-1$.
In particular, the growth is exponential:

$$
\xi_{[a, b]}(k) \sim \frac{\varphi^{k+3}}{\sqrt{5}}
$$

where $k \rightarrow \infty$ and $\varphi=(1+\sqrt{5}) / 2$.

n-bonacci Sequence

Definition

The n-bonacci sequence $\left\{F_{k}^{(n)}\right\}$ is defined recursively as follows:

$$
F_{k}^{(n)}=F_{k-1}^{(n)}+\ldots+F_{k-n}^{(n)}
$$

initial conditions are $F_{0}=\ldots=F_{n-2}=0$ и $F_{n-1}=1$.

Example

Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

Tribonacci sequence:

$$
0,0,1,1,2,4,7,13,24, \ldots
$$

The Case of $\mathbb{Z} / m * \mathbb{Z} / m$ with $\mathbb{Z} / 2<$ Aut

Proposition

The number S_{k} of new words, appearing on the step k, equals

$$
S_{k}=F_{k+m-2}^{(m-1)}
$$

when $k \geqslant-(m-2)$.

The Case of $\mathbb{Z} / m * \mathbb{Z} / m$ with $\mathbb{Z} / 2<$ Aut

Proposition (M. K.)

For the group $\mathbb{Z} / m * \mathbb{Z} / m=\left\langle a, b \mid a^{m}=b^{m}=1\right\rangle, m \geqslant 3$ with the automorphim $\varphi: a \mapsto b$ we have

$$
\xi_{[a, b]}(k) \sim \frac{r^{k+1}}{m r-2(m-1)}
$$

where $k \rightarrow \infty$ and r is the positive root of the polinomial $\chi(\lambda)=\lambda^{n}-\lambda^{n-1}-\ldots-1$. In particular, $\mathbb{G}_{\varphi}(\mathbb{Z} / m * \mathbb{Z} / m)$ has the polinomial growth if and only if $m=2$

The Case of $(\mathbb{Z} / 2)^{* s}$ with $\mathbb{Z} / s<$ Aut

Proposition

For the group $(\mathbb{Z} / 2)^{* s}=\left\langle a_{1}, \ldots, a_{s} \mid a_{1}^{2}=\ldots=a_{s}^{2}=1\right\rangle$ with the automorphism $a_{i} \mapsto a_{i+1}$ (indices move modulo s) we have the s-valued group with the growth

$$
\xi_{\left[a_{1}, \ldots, a_{s}\right]}(k)= \begin{cases}\frac{(s-1)^{k}-1}{s-2}+1, & s \geqslant 3 \\ k+1, & s=2\end{cases}
$$

In particular, the growth is polynomial if and only if $s=2$

$\mathbb{Z} / 3 * \mathbb{Z} / 3$ and Symbolic Dynamics

$\mathbb{Z} / 3 * \mathbb{Z} / 3$ and Symbolic Dynamics

An algorithm construction of a directed tree Γ, as vertices having the elements of 2 -valued group \mathbb{G} :
(0) We start with the vertex, corresponding to the empty set \wedge - the root of our tree
(1) Add the vertex $[a, b]$ adjacent to the root
(2) Add two edges to the last vertex: each of them corresponds to an addition a letter (a or b) on the right hand side. Now we have two words of length 2 : $\left[a^{2}, b^{2}\right]$ and $[a b, b a]$

$\mathbb{Z} / 3 * \mathbb{Z} / 3$ and Symbolic Dynamics

Definition

We say that a word is cube-free (it doesn't agree with the common use) if any word in the (natural) normal form of the group $\mathbb{Z} / 3 * \mathbb{Z} / 3=\left\langle a, b \mid a^{3}=b^{3}=1\right\rangle$
(9) On the step k we start with all cube-free words of length $k-1$ and add for each vertex 1 or 2 edges according to the principle:

- If a word ends with the first power of a letter then we will add 2 edges, corresponding to the multiplications with a and b
- If a word ends with the square of a letter then we will add exactly one edge, corresponding to the remaining letter
- The edge, corresponding to the multiplication with a, lies higher than the other one

Properties of Г

- On the level k of the tree 「 top down, all cube-free words of length k place in lexicographic ascending order and their number is F_{k+1}. Using the binary notation $a \leftrightarrow 0$, $b \leftrightarrow 1$, this order coincides with the natural order on the binary numbers
- If one picts, down to top, the vertex having the number F_{k} on each k-level of Γ then the resulting vertex sequence will form the route $a b(a a b)$ in Γ

Properties of Г

Properties of Г

The latter can be formulated more generally in the following

Proposition (M. K.)

For an infinite cube-free word Ψ, consider the factor sequence $\left\{\Theta_{k}\right\}$ of the form

$$
\Psi a a b a a b a a b \ldots=\Psi(a a b)
$$

$\Theta_{1}=\Psi, \Theta_{2}=\Psi a, \Theta_{3}=\Psi a a, \Theta_{4}=\Psi a a b, \Theta_{5}=\Psi a a b a, \ldots$
where the last letter of pre-period word Ψ differs from a. Then the number Q_{k} of cube-free words satisfies the recursive equality, with words being grater or equal Θ_{k} lexicographically:

$$
Q_{k}=Q_{k-1}+Q_{k-2} .
$$

Properties of Γ

Conclusion

- This construction of the tree might give some fruitful intuition about quasi-periodic words
- At present, there are gaps in the n-valued-group growth study
- The items above will be the subjects of further study

Thank you!

[1] Combinatorics on Words.
Cambridge Mathematical Library. Cambridge University Press, 2 edition, 1997.
[2] V. M. Buchstaber and E. G. Rees.
Multivalued groups, their representations and Hopf algebras.
Transformation Groups, 2(4):325-349, 1997.
[3] nLab.
Promonoidal category, 2012.
[4] L.A. Sadun.
Topology of Tiling Spaces.
University lecture series. American Mathematical Society, 2008.

